Ir para o conteúdo principal

Escrever uma avaliação PREreview

A Hybrid Pipeline for Covid-19 Screening Incorporating Lungs Segmentation and Wavelet Based Preprocessing of Chest X-Rays

Publicado
Servidor
medRxiv
DOI
10.1101/2022.03.13.22272311

We have developed a two-module pipeline for the detection of SARS-CoV-2 from chest X-rays (CXRs). Module 1 is a traditional convnet that generates masks of the lungs overlapping the heart and large vasa. Module 2 is a hybrid convnet that preprocesses CXRs and corresponding lung masks by means of the Wavelet Scattering Transform, and passes the resulting feature maps through an Attention block and a cascade of Separable Atrous Multiscale Convolutional Residual blocks to produce a class assignment as Covid or non-Covid. Module 1 was trained on a public dataset of 6395 CXRs with radiologist annotated lung contours. Module 2 was trained on a dataset of 2362 non-Covid and 1435 Covid CXRs acquired at the Henry Ford Health System Hospital in Detroit. Six distinct cross-validation models, were combined into an ensemble model that was used to classify the CXR images of the test set. An intuitive graphic interphase allows for rapid Covid vs. non-Covid classification of CXRs, and generates high resolution heat maps that identify the affected lung regions.

Você pode escrever uma avaliação PREreview de A Hybrid Pipeline for Covid-19 Screening Incorporating Lungs Segmentation and Wavelet Based Preprocessing of Chest X-Rays. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora