Saltar al contenido principal

Escribir un comentario

PREreview del Leveraging Quadratic Polynomials in Python for Advanced Data Analysis

Publicado
DOI
10.5281/zenodo.11149078
Licencia
CC BY 4.0

The manuscript is well-organized, with detailed and precise methods and implementation cases. The provided Python Notebook is especially handy. The proposed Python-formatted version of the code snippet for quadratic polynomials appears useful for researchers. Additionally, the code is available through MyBinder.org. However, I suggest that potential overfitting should be discussed to improve the manuscript's clarity and effectiveness. While a high R-squared value often suggests a good fit of the model to the data, it can also be misleading. A very high R-squared value can be a sign of overfitting, particularly in cases where the number of predictors (independent variables) is close to the number of observations.

Competing interests

The author declares that they have no competing interests.

Puedes escribir un comentario en esta PREreview de Leveraging Quadratic Polynomials in Python for Advanced Data Analysis.

Antes de comenzar

Te pediremos que inicies sesión con tu iD de ORCID. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de todas las demás personas con el mismo nombre o similar.

Comenzar ahora