Ir para o conteúdo principal

Escrever uma avaliação PREreview

The Information-Energy Phase Transition Theory: A Tiered Framework for Life's Emergence from Simple to Complex Replicators

Publicado
Servidor
Zenodo
DOI
10.5281/zenodo.17575370

Life’s emergence from prebiotic chemistry represents a fundamental organiza- tional transition in matter. We present the Information-Energy Phase Transi- tion (IEPT) theory, which frames abiogenesis as a thermodynamic phase transi- tion analogous to percolation, occurring when energy flux, molecular complexity, and information storage simultaneously exceed critical thresholds. This revised framework addresses the “initial replicator problem” through a tiered evolution- ary model, progressing from simple self-ligating RNAs (Tier 1: 30–85 nucleotides, Etotal ≈ 800–1500 kJ mol−1) to complex polymerase ribozymes (Tier 2: 165 nu- cleotides, Etotal ≈ 2100–2400 kJ mol−1). For Tier 1 systems, we calculate achievable internal nucleoside triphosphate (NTP) concentrations of 0.5–1.0 mM within prebiotic vesicles through parallel geo- chemical concentration networks operating over 20–45 days. Tier 2 systems require 1.5–2.5 mM, achievable through scaffolded evolution after the initial transition. We demonstrate kinetic feasibility by modeling competitive inhibition (fcomp = 0.05– 0.15) and incorporating continuous NTP regeneration via trimetaphosphate-driven phosphorylation. The theory integrates kinetic proofreading costs into information maintenance energy, explicitly connects the phase transition criterion (θ = Gavail/Etotal = 1) to non-equilibrium steady states, and models homochirality emergence as a symmetry- breaking bifurcation. Stochastic simulations reveal critical exponents β ≈ 0.40 ± 0.04 matching the 3D percolation universality class, suggesting replication involves formation of connected sequence networks in high-dimensional sequence space. Experimental validation protocols employ isothermal titration calorimetry com- bined with differential scanning calorimetry to detect the predicted 12–20% net entropy reduction and heat capacity divergence characteristic of continuous phase transitions. Critical exponents are measured using an informational order parame- ter ψ = 1−Hnorm derived from deep sequencing. Crucially, we provide protocols for testing alternative genetic polymers (peptide nucleic acids, threose nucleic acids) to validate predicted threshold reductions of 25–40%. IEPT transforms origin-of-life research into quantitative, falsifiable science by defining the minimum environmental conditions necessary for the spontaneous emer- gence of self-sustaining molecular organization.

Você pode escrever uma avaliação PREreview de The Information-Energy Phase Transition Theory: A Tiered Framework for Life's Emergence from Simple to Complex Replicators. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora