Ir para o conteúdo principal

Escrever uma avaliação PREreview

Allergic Rhinitis Prediction Through Machine Learning with Integrating Environmental, Immunologic, and Demographic Factors

Publicado
Servidor
Preprints.org
DOI
10.20944/preprints202511.1561.v1

Allergic rhinitis (AR) is a widespread allergic reaction that has been shown to be impacted by the function of the immune system as well as environment and socioeconomic factors. This research is to explore the best predictive model among penalized logistic regression, random forest classifier, and XGBoost classifier, to gain insight into subjects who are susceptible to allergic rhinitis by taking advantage of the integrated data NHANES provides. The random forest model demonstrated the most stable performance. SHAP analysis provided interpretable insights at both group and individual levels, revealing that immune-related markers, including total IgE, eosinophil percentage, and the neutrophil-to-lymphocyte ratio were the strongest predictors of AR susceptibility. Environmental and socioeconomic exposures, such as cotinine levels, housing conditions, and income, also contributed substantially to the predicted risk. Overall, the findings highlighted that AR susceptibility arises from the combined influence of immunologic dysregulation and environmental stressors, underscoring the need for targeted preventive strategies.

Você pode escrever uma avaliação PREreview de Allergic Rhinitis Prediction Through Machine Learning with Integrating Environmental, Immunologic, and Demographic Factors. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora