Ir para o conteúdo principal

Escrever uma avaliação PREreview

Multifractal Random Walk Model for Bursty Impulsive PLC Noise

Publicado
Servidor
Preprints.org
DOI
10.20944/preprints202511.0406.v1

The indoor low-voltage power line network is characterized by highly irregular interferences, where background noise coexists with bursty impulsive noise originating from household appliances and switching events. Traditional noise models, which are considered monofractal models, often fail to reproduce the clustering, intermittency, and long-range dependence seen in measurement data. In this paper, a Multifractal Random Walk (MRW) framework tailored for Power Line Communication (PLC) noise modelling is developed. MRW is a continuous time limit process based on discrete time random walks with stochastic log-normal variance. As such, the formulated MRW framework introduces a stochastic volatility component that modulates Gaussian increments, thus generating heavy-tailed statistics and multifractal scaling laws which are consistent with the measured PLC noise data. Empirical validation is done through structure function analysis and covariance of log-amplitudes, both of which reveal scaling characteristics that align well with MRW simulated predictions. This proposed model captures both the bursty nature and correlation structure of impulsive PLC noise more effectively as compared to the conventional monofractal approaches, thereby providing a mathematically grounded framework for accurate noise generation and robust system-level performance evaluation of PLC networks.

Você pode escrever uma avaliação PREreview de Multifractal Random Walk Model for Bursty Impulsive PLC Noise. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora