Ir para o conteúdo principal

Escrever uma avaliação PREreview

Efficient Assessment of the Risk of Elevated Aspartate Aminotransferase Using Machine Learning Methods Based on Routine Biochemical Markers

Publicado
Servidor
Preprints.org
DOI
10.20944/preprints202506.2273.v1

This study proposes an interpretable and high-accuracy ensemble learning framework for predicting aspartate aminotransferase (AST) levels using open-access biomedical datasets. Using a structured pipeline of preprocessing, feature selection, and model ensembling, we evaluated a series of regression algorithms including Random Forest, XGBoost, CatBoost, and three stacking architectures. The best-performing ensemble (Stacking_v2) achieved R² = 0.98 and RMSE = 1.23 on the validation set, surpassing conventional and single-model approaches. Feature importance was assessed using SHAP values, mutual information, and correlation analysis, revealing that gamma-glutamyl transferase, ferritin, and anthropometric markers had the greatest predictive impact. The proposed stacking-based model demonstrates excellent generalization, robust calibration, and high interpretability, and can serve as a benchmark for algorithmic evaluation in medical data modeling. The work highlights the effectiveness of ensemble regression and interpretable AI in real-world clinical prediction tasks using routine biomarkers.

Você pode escrever uma avaliação PREreview de Efficient Assessment of the Risk of Elevated Aspartate Aminotransferase Using Machine Learning Methods Based on Routine Biochemical Markers. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora