Ir para o conteúdo principal

Escrever uma avaliação PREreview

Hilbert–Pólya via de Branges and the Weyl m-Function: Vertical Convolution and the Riemann Hypothesis

Publicado
Servidor
SciELO Preprints
DOI
10.1590/scielopreprints.13340

We present a deterministic analytic–spectral route to the Riemann Hypothesis. The argument begins with a Gaussian spectral regularization of the zeta function around a variationally selected center and encodes the functional symmetry at the level of a completed companion that is entire and exactly symmetric. A vertical convolution identity with a Gaussian kernel, together with uniform analytic estimates, produces locally uniform convergence from the regularized completion to the classical one. On the operator side, we construct, for each regularization scale, explicit self-adjoint Schrödinger operators with exponential confinement whose Weyl–Titchmarsh data are calibrated to the completed arithmetic model; equality of spectral measures follows. This calibration forces a Hermite–Biehler structure for the completed functions, which in turn places all zeros on the critical line at every fixed scale. Passing to the limit, the zero set is transferred and the Riemann Hypothesis is established. Conceptually, the work realizes the Hilbert–Pólya philosophy at each scale and, in the limit, furnishes a self-adjoint model at the level of Weyl data for the classical completion. Methodologically, the proof uses only standard tools from complex analysis, de Branges spaces, and Weyl–Titchmarsh theory, and it is organized so that each step is transparent and verifiable on its own. We also record stability results for zero counts on crossing rectangles and robustness under changes of smoothing and compact perturbations of the confining potential.

Você pode escrever uma avaliação PREreview de Hilbert–Pólya via de Branges and the Weyl m-Function: Vertical Convolution and the Riemann Hypothesis. Uma avaliação PREreview é uma avaliação de um preprint e pode variar de algumas frases a um parecer extenso, semelhante a um parecer de revisão por pares realizado por periódicos.

Antes de começar

Vamos pedir que você faça login com seu ORCID iD. Se você não tiver um iD, pode criar um.

O que é um ORCID iD?

Um ORCID iD é um identificador único que diferencia você de outras pessoas com o mesmo nome ou nome semelhante.

Começar agora