Skip to main content

Write a PREreview

HyperDiff: An Inverse Design Framework for Hyperelastic Microstructures Based on a Conditional Diffusion Model

Posted
Server
Preprints.org
DOI
10.20944/preprints202511.0619.v2

Designing hyperelastic porous microstructures under finite strain is challenging because bending, buckling, contact, and densification interact to produce nonconvex and one-to-many relations between topology and response. We present HyperDiff, a conditional diffusion framework that reformulates inverse design as probabilistic sampling rather than deterministic regression. A compact B-spline encoding of the target force--displacement curve captures the system’s energy-evolution trend, providing temporal and mechanical context that guides the denoising process toward physically consistent configurations with the desired multi-stage deformation behavior. The workflow integrates Gaussian random field (GRF)-based topology generation, constitutive calibration, large-deformation finite-element simulations, and quasi-static compression experiments. Across held-out and interpolated targets, the generated microstructures accurately reproduce sequential deformation stages (bending-buckling-densification) and global responses, with deviations typically below 10%, while preserving manufacturability and one-to-many design diversity. The current implementation focuses on two-dimensional unit cells under quasi-static compression, yet the framework is extensible to 3D, multi-resolution, and multi-physics systems. By combining physics-aware conditioning with generative sampling, HyperDiff establishes a practical front end for mechanics-based design workflows, applicable to programmable soft actuators, impact-energy absorbers with tunable plateaus, and rapid exploration of nonlinear architected materials for soft and deformable systems.

You can write a PREreview of HyperDiff: An Inverse Design Framework for Hyperelastic Microstructures Based on a Conditional Diffusion Model. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now