Saltar al contenido principal

Escribe una PREreview

HyperDiff: An Inverse Design Framework for Hyperelastic Microstructures Based on a Conditional Diffusion Model

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202511.0619.v2

Designing hyperelastic porous microstructures under finite strain is challenging because bending, buckling, contact, and densification interact to produce nonconvex and one-to-many relations between topology and response. We present HyperDiff, a conditional diffusion framework that reformulates inverse design as probabilistic sampling rather than deterministic regression. A compact B-spline encoding of the target force--displacement curve captures the system’s energy-evolution trend, providing temporal and mechanical context that guides the denoising process toward physically consistent configurations with the desired multi-stage deformation behavior. The workflow integrates Gaussian random field (GRF)-based topology generation, constitutive calibration, large-deformation finite-element simulations, and quasi-static compression experiments. Across held-out and interpolated targets, the generated microstructures accurately reproduce sequential deformation stages (bending-buckling-densification) and global responses, with deviations typically below 10%, while preserving manufacturability and one-to-many design diversity. The current implementation focuses on two-dimensional unit cells under quasi-static compression, yet the framework is extensible to 3D, multi-resolution, and multi-physics systems. By combining physics-aware conditioning with generative sampling, HyperDiff establishes a practical front end for mechanics-based design workflows, applicable to programmable soft actuators, impact-energy absorbers with tunable plateaus, and rapid exploration of nonlinear architected materials for soft and deformable systems.

Puedes escribir una PREreview de HyperDiff: An Inverse Design Framework for Hyperelastic Microstructures Based on a Conditional Diffusion Model. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora