Saltar al contenido principal

Escribe una PREreview

A Universal Exponential Law for Real Alternative Algebras and its Geometric Applications

Publicada
Servidor
Zenodo
DOI
10.5281/zenodo.17575548

Euler's identity eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta and De~Moivre's formula describe rotations generated by an imaginary unit ii satisfying i2=1i^2=-1. In associative and alternative hypercomplex algebras, however, arbitrary elements AA need not square to 1-1, the exponential map may lose geometric meaning, and fractional powers AxA^x often lack closed forms.   This paper systematizes existing exponential formulas into a unified algorithmic framework with computational advantages.F admits a two-term Euler-type fractional power: \emph{AxA^x has a closed form if and only if A2A^2 is a nonzero real scalar}.  When A2<0A^2<0 we obtain the elliptic (rotation) formula with αx=(A2)xR>0 \alpha^x= (\sqrt{\lvert A^{2} \rvert})^{x} \in \mathbb{R}_{>0} \[ A^x = \alpha^x\!\left[\cos\Bigl(\tfrac{\pi x}{2}\Bigr) + E\sin\Bigl(\tfrac{\pi x}{2}\Bigr)\right], \qquad E=\frac{A}{\sqrt{-A^2}},\; E^2=-1, \] extending Euler and De~Moivre to all alternative algebras, including quaternions and octonions.  When A2>0A^2>0, we obtain the symmetric hyperbolic (boost) formula \[ A^x = \alpha^x\!\left[\cosh\Bigl(\tfrac{\pi x}{2}\Bigr) + H\sinh\Bigl(\tfrac{\pi x}{2}\Bigr)\right], \qquad H=\frac{A}{\sqrt{A^2}},\; H^2=+1, \] which covers split-quaternions and other hyperbolic directions.   Both formulas follow from the principal logarithm log(A)=Aπ/2\log(A)=A\pi/2 on the generated 11--AA plane and remain valid for all real fractional exponents.  A collapse identity is proved: \[ A^{A x}= \exp(A^2\pi x/2), \] giving the classical ii=eπ/2i^i=e^{-\pi/2} and its hyperbolic analogues as special cases.  When A2RA^2\notin\mathbb{R} or AA is a zero divisor (as in the sedenions), the two-term formulas fail exactly, giving a precise obstruction.   This yields an algorithmic framework for fractional exponentiation in all Cayley--Dickson and split algebras: test A2A^2, normalize, and apply the elliptic or hyperbolic closed form when allowed.  Applications include hypercomplex cyclotomy, Galois actions along arbitrary imaginary directions, and rotation/boost operators in higher dimensions.  All claims are supported by independent numerical validation, with reproducible code provided.     Critically, we demonstrate that this algebraic approach eliminates the need for the computationally expensive \texttt{arctan2} function required by standard polar decomposition methods. Benchmarking against standard library implementations reveals a mean computational speedup of approximately 2x+2x+ times faster for quaternion roots than SciPy Rotation as standard library, attributed to the replacement of transcendental inverse trigonometric functions with hardware-accelerated algebraic operations. Numerical validation confirms that this performance gain incurs no penalty in accuracy, maintaining machine precision (101610^{-16}) and exhibiting superior stability near the identity element. This method offers a unified, high-performance primitive for geometric rotations in computer graphics, robotics, and hypercomplex neural networks.

Puedes escribir una PREreview de A Universal Exponential Law for Real Alternative Algebras and its Geometric Applications. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora