Saltar al contenido principal

Escribe una PREreview

Xuan-Liang Theory: Mathematical Construction from Basic Formula to Unified Equation

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202512.1393.v1

This paper starts from the basic definition of Xuan-Liang \( X = \frac{1}{3}mv^3 \) and, through rigorous mathematical-physical derivation, constructs the unified equation of Xuan-Liang theory. We first establish the geometric hierarchy theory of Xuan-Liang, generalize it to relativistic form, and then extend the Xuan-Liang concept to high-dimensional manifolds using differential geometry and topological methods. The core innovation lies in: starting from a simple algebraic expression, through a series of natural mathematical generalizations, ultimately deriving a unified equation with profound geometric implications: \( \int_{\mathcal{M}} \left[ \text{Tr}(\mathbb{X} \wedge \star \mathbb{X}) + \langle \Psi_X, \mathcal{D} \Psi_X \rangle + \alpha \mathbb{X} \wedge \mathcal{R} \right] = \chi(\mathcal{M}) \rho_X^{\text{min}} + \beta \int_{\partial\mathcal{M}} \Phi_{\text{obs}} \)This equation achieves a unified description of mass, motion, and spacetime geometry, providing a new theoretical framework for addressing problems of dark matter, dark energy, and quantum gravity. Specifically, we prove that under appropriate limits, the unified equation can naturally reduce to Einstein's field equations of general relativity and Newton's gravitational potential equation, which provides a solid foundation for the physical plausibility of the theory.

Puedes escribir una PREreview de Xuan-Liang Theory: Mathematical Construction from Basic Formula to Unified Equation. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora