Saltar al contenido principal

Escribe una PREreview

Process Intensification and Operational Parameter Optimization of Oil Agglomeration for Coal Slime Separation

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202512.1008.v1

Oil agglomeration, as an efficient technique for coal slime cleaning and upgrading, was employed to separate coal slime with an ash content of 19.08% in this work. The optimum oil type, the pulp density, the oil dosage, and the agitation rate were determined at the dodecane, 12%, 24%, and 1600 r/min, respectively. The response surface methodology (RSM) was adopted to investigate the interactions between various operational factors on the response of combustible material recovery, efficiency index, and ash rejection. By considering the interactions among operational factors, the agglomeration achieved improvement, given small oil consumption, medium agitation rate, and high processing capacity, through optimized operational conditions. Moreover, a prediction model with a higher prediction accuracy for the efficiency index of coal slime oil agglomeration was established based on the artificial neural network (ANN). This work provides an experimental foundation for the operation design and process optimization in the oil agglomeration of coal slimes.

Puedes escribir una PREreview de Process Intensification and Operational Parameter Optimization of Oil Agglomeration for Coal Slime Separation. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora