Saltar al contenido principal

Escribe una PREreview

Decorated Loop-Spaces I: Foundations and Applications

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202512.0735.v1

Classical loop-spaces capture cyclic behaviour in topology but are blind to the auxiliary data that often drives real-world quasi-periodic phenomena. In this paper we introduce decorated loop-spaces, organised into a category DecLpSpc\mathbf{DecLpSpc}, whose objects are spaces equipped with “decorators” (labelling generators by auxiliary data) and whose morphisms are “connectors” acting on families of functions. We construct a decorated loop functor Ω^:DecLpSpcDecLpSpc,\widehat{\Omega} : \mathbf{DecLpSpc} \to \mathbf{DecLpSpc}, define a notion of decorated concatenation, and prove coherence and functoriality results in the spirit of Eckmann–Hilton duality. On the homotopical side, we extend classical Whitehead products and higher homotopy brackets to the decorated setting, obtaining decorated Whitehead products and Jacobiators that refine the quasi-Lie structure on homotopy groups by keeping track of decoration data. We show that DecLpSpc\mathbf{DecLpSpc} admits a natural symmetric monoidal structure and support operads acting on decorated loop-spaces, giving a recognition principle for iterated decorated loop functors Ω^n\widehat{\Omega}^n. A worked example on a wedge of spheres illustrates how decorations enrich a nontrivial Whitehead product with additional algebraic labels. Finally, we outline several applications in which decorations encode physically or computationally meaningful structure: string dynamics and vacuum expectation values in background fluxes, evolutionary dynamics where decorations separate epigenetic from phenotypic data, and feedback and signal-processing architectures (including an OCR-inspired case study) where connectors transport function families between different feature spaces. We conclude with directions for an intrinsic homotopy theory of DecLpSpc\mathbf{DecLpSpc}, computable invariants, and data-driven variants of the framework.

Puedes escribir una PREreview de Decorated Loop-Spaces I: Foundations and Applications. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora