Saltar al contenido principal

Escribe una PREreview

<p class="Els-Author" style="margin-bottom: 12.0pt; text-align: left; mso-line-height-alt: 14.0pt; page-break-after: auto; mso-hyphenate: auto; layout-grid-mode: char; mso-layout-grid-align: none;" align="left">A Deep Learning Journey in Closed-Domain Medical Question Answering with RNN-Attention and Intelligent Question Expansion

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202512.0093.v1

Deep learning-based Medical Question Answering (MQA) systems are transforming access to healthcare information by enabling accurate and timely responses to complex queries. However, existing systems face challenges such as limited large-scale, high-quality medical datasets, inadequate contextual understanding, and difficulties in managing diverse medical terminologies This research proposes a novel closed-domain MQA system that addresses these limitations through innovative methodologies. The system employs BioBERT-based domain-specific embeddings trained on biomedical literature to accurately capture medical terminology, abbreviations, and contextual nuances. To model sequential dependencies in queries, Recurrent Neural Networks (RNNs) are integrated, enabling contextual interpretation across longer text sequences. Additionally, a question expansion mechanism utilizing medical dictionaries and ontologies like UMLS addresses synonymy, ambiguity, and terminological variations, ensuring that diverse medical expressions map to consistent, semantically relevant concepts for precise answer retrieval. Extensive evaluation using metrics such as F1-score, precision, recall, and exact match demonstrates the system’s superior performance compared to existing models. The key contributions include improved contextual understanding, better handling of medical terminology, and a scalable framework for future medical NLP applications. This system not only offers a reliable tool for healthcare professionals and patients but also advances the field of intelligent question answering by supporting evidence-based clinical decision-making.

Puedes escribir una PREreview de <p class="Els-Author" style="margin-bottom: 12.0pt; text-align: left; mso-line-height-alt: 14.0pt; page-break-after: auto; mso-hyphenate: auto; layout-grid-mode: char; mso-layout-grid-align: none;" align="left">A Deep Learning Journey in Closed-Domain Medical Question Answering with RNN-Attention and Intelligent Question Expansion. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora