Saltar al contenido principal

Escribe una PREreview

A Theta–Regularized Identity for SL<sub>2</sub> and a Fejér–Windowed Strip Bridge for Log|ξ|

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202512.0047.v1

A theta--regularized inner product identity in rank one is established, linking a mixed theta--weighted Eisenstein pairing on \( \Gamma \)\H to the \( \sigma \)--derivative of \( \log|\xi(s)| \), up to explicit Euler factor correction terms arising from the \( G\times G \) doubling formalism. More precisely, for \( s=\tfrac12+\sigma+t \) it is shown that \( \frac{\partial}{\partial\sigma}\log\left|\big\langle\Theta(\cdot)E(\cdot,s),\ \Theta(\cdot)E(\cdot,1-\overline{s})\big\rangle_{\mathrm{reg}}\right|=2\,\mathrm{Re}\,\frac{\xi'(s)}{\xi(s)}\ -\ 2\,\mathrm{Re}\,\frac{\zeta'(2s)}{\zeta(2s)}\ +\ 2\,\mathrm{Re}\,\frac{\zeta'(2-2\overline{s})}{\zeta(2-2\overline{s})} \),as an identity of tempered distributions in t. On the critical line \( \sigma=0 \) the Euler corrections cancel and a particularly simple formula is obtained:\( \frac{\partial}{\partial\sigma}\log\big\langle\Theta(\cdot)E(\cdot,\tfrac12+\sigma+t),\ \Theta(\cdot)E(\cdot,\tfrac12-\sigma+ t)\big\rangle_{\mathrm{reg}}\Big|_{\sigma=0}=2\,\frac{\partial}{\partial\sigma}\log\left|\xi\bigl(\tfrac12+\sigma+t\bigr)\right|\Big|_{\sigma=0} \). Fejér--windowed versions of these identities are then obtained, and a Fejér--windowed "strip bridge'' is proved: a harmonic operator identity expressing the short--band component of \( \partial_\sigma\log|\xi(1/2+\sigma+t)| \) at an interior latitude via a linear combination of Fejér--smeared edge data, with a power--saving \( O(H^{-\eta}) \) remainder after short--band freezing, uniformly for \( |\sigma^\star|\ge \sigma_0&gt;0 \). A sharp truncation stability result is also established. After subtracting the finitely many Zagier--Arthur cusp counterterms, the Fejér--smeared \( \sigma \)--derivative of the logarithm of the truncated mixed theta--Eisenstein pairing agrees with its regularized version up to \( O(H^{-A}) \) for any prescribed \( A&gt;0 \), provided the truncation height \( Y=H^{B(A)} \) is chosen sufficiently large. A brief discussion is included of numerical checks in a sample region, and a short Fourier--analytic proof note is given for the renormalization estimate that underlies the strip bridge.

Puedes escribir una PREreview de A Theta–Regularized Identity for SL<sub>2</sub> and a Fejér–Windowed Strip Bridge for Log|ξ|. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora