Saltar al contenido principal

Escribe una PREreview

Wi-Fi RSS and RTT Indoor Positioning with Graph Temporal Convolution Network

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202511.0725.v1

Indoor positioning using commodity Wi-Fi has gained significant attention; however, achieving sub-meter accuracy across diverse layouts remains challenging due to multipath fading and non-line-of-sight (NLOS) effects. In this work, we propose a hybrid Graph–Temporal Convolutional Network (GTCN) model that incorporates access point (AP) geometry through graph convolutions while capturing temporal signal dynamics via dilated temporal convolutional networks. The proposed model adaptively learns per-AP importance using a lightweight gating mechanism and jointly exploits Wi-Fi Received Signal Strength (RSS) and Round Trip Time (RTT) features for enhanced robustness.It is evaluated across four experimental areas such as lecture theatre, office, corridor, and building floor covering areas from 15 × 14.5 m2 to 92 × 15 m2. We further analyze the sensitivity of the model to AP density under both LOS and NLOS conditions, demonstrating that positioning accuracy systematically improves with denser AP deployment, particularly in large-scale mixed environments. Despite its high accuracy, the proposed GTCN remains computationally lightweight, requiring fewer than 105 trainable parameters and only tens of MFLOPs per inference, enabling real-time operation on embedded and edge devices.

Puedes escribir una PREreview de Wi-Fi RSS and RTT Indoor Positioning with Graph Temporal Convolution Network. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora