Saltar al contenido principal

Escribe una PREreview

Classification of ALS Molecular Subtypes: A Review of Machine Learning Applications and Their Clinical Value

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202510.2537.v1

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by considerable heterogeneity in both its underlying biological mechanisms and clinical presentation. High-dimensional transcriptomic datasets offer an opportunity to characterise this variation at the molecular level; however, traditional statistical methods struggle with their scale and complexity. Machine learning approaches can reduce dimensionality and uncover latent patterns, enabling the identification of molecular subtypes that may refine prognosis and support patient stratification.Recent transcriptomic studies employing unsupervised machine learning have identified ALS subtypes with distinct molecular and clinical characteristics. Redefining ALS into more homogeneous molecular and clinical subtypes could transform all areas of ALS research by supporting novel experimental designs and precision medicine approaches. In this review, we summarise and critically assess these studies, discussing their findings, strengths, and limitations, and highlighting research gaps and challenges that should be addressed to enable their translation into biomedical and clinical practice.

Puedes escribir una PREreview de Classification of ALS Molecular Subtypes: A Review of Machine Learning Applications and Their Clinical Value. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora