Saltar al contenido principal

Escribe una PREreview

Eye Disease Classification from OCT Images

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202510.1822.v1

This study presents a deep learning–based framework for the automated classification of retinal diseases using Optical Coherence Tomography (OCT) images. Convolutional neural network architectures, including ResNet50, Xception, and Inception V3, were developed and evaluated to distinguish between pathological and normal retinal conditions, such as Choroidal Neovascularization, Diabetic Macular Edema, and Drusen. The proposed models demonstrated high accuracy and strong generalization across benchmark OCT datasets. Incorporating preprocessing steps such as denoising significantly improved performance, particularly for the Xception and Inception V3 models. These findings highlight the potential of AI-driven analysis to support early diagnosis and clinical decision-making in ophthalmology.

Puedes escribir una PREreview de Eye Disease Classification from OCT Images. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora