Saltar al contenido principal

Escribe una PREreview

Predicting Stock Price Volatility of the Magnificent Seven Using Classification Models in Response to Tariff Announcements

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202510.1662.v1

Predicting periods of heightened stock-price volatility helps investors and policy makers manage risk during geopolitical and macroeconomic shocks. This study models the short-term volatility of seven influential U.S. technology companies—Apple, Microsoft, Alphabet, Amazon, Nvidia, Tesla and Meta—collectively known as the “Magnificent Seven.” We build classification models to distinguish between high- and low-volatility regimes using daily stock prices, technical indicators and sentiment signals derived from tariff news between 1 January 2018 and 30 April 2025. The United States Trade Representative announced in May 2024 that tariffs on semiconductors will rise from 25% to 50% and tariffs on electric vehicles will increase from 25% to 100% these actions highlight the importance of trade policy for tech stocks. Our methodology computes a rolling 14-day standard deviation to label volatility regimes and applies logistic regression, decision trees and random forest classifiers. The random forest model tuned with Optuna outperforms other methods, achieving 0.69 accuracy, 0.64 precision, 0.65 recall, 0.64 F1 and a ROC–AUC of 0.72 on out-of-sample data. Feature importance analysis shows that tariff sentiment, average true range and Bollinger band width are the strongest predictors of volatility. The models and visualizations, along with a reproducible code appendix, offer investors and policy makers a transparent framework for assessing the impact of tariff announcements on market turbulence.

Puedes escribir una PREreview de Predicting Stock Price Volatility of the Magnificent Seven Using Classification Models in Response to Tariff Announcements. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora