Saltar al contenido principal

Escribe una PREreview

KOS: Kernel-based Optimal Subspaces Method for Data Classification

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202510.1014.v1

Support Vector Machines (SVM) is a popular kernel-based method for data classifica- 2 tion that have demonstrated high efficiency across a wide range of practical applications. 3 However, SVM suffers from several limitations, including the potential failure of the opti- 4 mization process,especially in high-dimensional spaces, the inherently high computational 5 cost, the lack of a systematic approach to multiclass classification, difficulties in handling 6 imbalanced classes, and the prohibitive cost of real-time or dynamic classification. This 7 paper proposes an alternative method, referred to as Kernel-based Optimal Subspaces 8 (KOS). The method achieves performance comparable to SVM while addressing the afore- 9 mentioned weaknesses. It is based on computing a minimum distance to optimal feature 10 subspaces of the mapped data. No optimization process is required, which makes the 11 method robust, fast, and easy to implement. The optimal subspaces are constructed inde- 12 pendently, enabling high parallelizability and making the approach well-suited for dynamic 13 classification and real-time applications. Furthermore, the issue of imbalanced classes is 14 naturally handled by subdividing large classes into smaller sub-classes, thereby creating 15 appropriately sized sub-subspaces within the feature space.

Puedes escribir una PREreview de KOS: Kernel-based Optimal Subspaces Method for Data Classification. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora