Saltar al contenido principal

Escribe una PREreview

Enhancing Intrusion Detection in Autonomous Vehicles Using Ontology-Driven Mitigation

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.2492.v1

With the increasing complexity of autonomous vehicle (AV) networks, ensuring enhanced cybersecurity has become a critical challenge. Traditional security techniques often struggle to adapt dynamically to evolving threats. This study proposes a novel domain ontology to assess its coherence and effectiveness in structuring knowledge about AV security threats, intrusion characteristics, and corresponding mitigation techniques. Developed using Protégé 4.3 and the Web Ontology Language (OWL), the ontology formalizes cybersecurity concepts without directly integrating with an Intrusion Detection System (IDS). By providing a semantic representation of attacks and countermeasures, the ontology enhances threat classification and supports automated decision-making in security frameworks. Experimental evaluation demonstrated its effectiveness in improving knowledge organization and reducing inconsistencies in security threat analysis. Future work will focus on integrating the ontology with real-time security monitoring and IDS frameworks to enhance adaptive intrusion response strategies.

Puedes escribir una PREreview de Enhancing Intrusion Detection in Autonomous Vehicles Using Ontology-Driven Mitigation. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora