Saltar al contenido principal

Escribe una PREreview

An Axiomatic Theory of Quaternionic Probability Extending Kolmogorov’s Framework

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.2314.v1

We present an axiomatic construction of quaternionic probability, extending Kolmogorov’s classical framework to the noncommutative algebra of quaternions. The theory introduces quaternionic probability spaces, conditional probabilities, Bayes’ rules, independence, random variables, expectations, and transport equations, all formulated in a consistent manner. Classical probability is recovered through scalar projection, while restriction to complex subalgebras reproduces the standard quantum formalism. Uniquely quaternionic structures arise, including noncommutative conditional probabilities, inequivalent forms of independence, and quaternionic transport laws. The framework further develops quaternionic Markov chains, entropy, and divergence measures that separate scalar uncertainty from vectorial coherence. Several illustrative examples are provided to show how quaternionic probability captures order effects, hidden correlations, and orthogonal divergences—features invisible to both classical and complex approaches. These results establish quaternionic probability as a rigorous generalization of Kolmogorov’s axioms and as a potential foundation for future studies in noncommutative probability, integrable structures, and quaternionic extensions of mathematical physics.

Puedes escribir una PREreview de An Axiomatic Theory of Quaternionic Probability Extending Kolmogorov’s Framework. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora