Saltar al contenido principal

Escribe una PREreview

Hybrid AI Pipeline for Industrial Detection of Internal Potato Defects Using 2D RGB Imaging

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.1920.v1

The internal quality assessment of potato tubers is a crucial task in agro-industrial processing. Traditional methods struggle to detect internal defects such as hollow heart, internal bruises, and insect galleries using only surface features. We present a novel, fully modular hybrid AI architecture designed for defect detection using RGB images of potato slices, suitable for integration in industrial sorting lines. Our pipeline combines high-recall multi-threshold YOLO detection, contextual patch validation using ResNet, precise segmentation via the Segment Anything Model (SAM), and skin-contact analysis using VGG16 with a Random Forest classifier. Experimental results on a labeled dataset of over 6000 annotated instances show a recall above 90\% and precision near 100\% for most defect classes. The approach offers both robustness and interpretability, outperforming previous methods that rely on costly hyperspectral or MRI techniques. This system is scalable, explainable, and compatible with existing 2D imaging hardware.

Puedes escribir una PREreview de Hybrid AI Pipeline for Industrial Detection of Internal Potato Defects Using 2D RGB Imaging. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora