Saltar al contenido principal

Escribe una PREreview

Community-Based AI Development: A Framework for Integrating Artificial Intelligence with Traditional Research Methodologies in Educational and Social Contexts

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.0935.v1

The integration of artificial intelligence (AI) technologies with traditional research methodologies presents significant opportunities for enhancing educational and social interventions while maintaining scientific rigor and community engagement. However, current approaches often lack systematic frameworks for ensuring community ownership, ethical implementation, and sustainable social impact. This study introduces and validates the Community-Based AI Development (CBAID) framework through comprehensive analysis of five diverse AI projects implemented during the Accadia Winter School initiative, focusing on methodological innovation, replicability, and social impact. We employed a multiple case study design analyzing five AI projects: G.A.M.E.S.-I.N. (health promotion), AI4Citizens (digital governance), LLM-Didattica (educational technology), DACSE (health communication), and AI-Enhanced Cybersecurity Training. Data collection included project documentation, stakeholder interviews (n=47), focus groups (n=8), surveys, and observational records. Cross-case analysis identified common patterns and framework validation evidence. All five projects demonstrated successful CBAID framework implementation with significant positive outcomes. Community engagement indicators showed high satisfaction (4.3/5.0) and meaningful participation in decision-making. Individual outcomes included enhanced knowledge, skills, and self-efficacy across domains. The framework showed strong transferability across diverse contexts with systematic adaptation guidance.

Puedes escribir una PREreview de Community-Based AI Development: A Framework for Integrating Artificial Intelligence with Traditional Research Methodologies in Educational and Social Contexts. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora