Saltar al contenido principal

Escribe una PREreview

Federated Learning for Secure Data Sharing Across Distributed Networks

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.0828.v1

Federated learning (FL) has emerged as a transformative paradigm for collaborative model training without the need to centralize sensitive information. By enabling multiple participants to train a shared model locally and only exchange model updates, FL preserves privacy while leveraging the diversity of distributed data. This approach is particularly significant in domains such as healthcare, finance, and industrial Internet of Things, where data confidentiality and compliance with regulatory standards are critical. Despite its promise, FL faces challenges related to security vulnerabilities, communication overhead, and model aggregation fairness across heterogeneous networks. Recent advances in secure aggregation, differential privacy, and blockchain integration have shown potential in mitigating these risks while ensuring trust among participants. This paper examines the role of federated learning as a mechanism for secure data sharing across distributed networks, highlighting its core advantages, limitations, and future directions for achieving scalable and resilient decentralized intelligence.

Puedes escribir una PREreview de Federated Learning for Secure Data Sharing Across Distributed Networks. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora