Saltar al contenido principal

Escribe una PREreview

Cross-Subject EEG Emotion Recognition Using SSA-EMS Algorithm for Feature Extraction

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202509.0064.v1

This study proposes a novel SSA-EMS framework that integrates Singular Spectrum Analysis (SSA) with Effect-Matched Spatial Filtering (EMS), combining the noise-reduction capability of SSA with the dynamic feature extraction advantages of EMS to optimize cross-subject EEG-based emotion feature extraction. Experiments were con-ducted using the SEED dataset under two evaluation paradigms: "cross-subject sample combination" and "subject-independent" assessment. Random Forest (RF) and SVM clas-sifiers were employed to perform pairwise classification of three emotional states—positive, neutral, and negative. Results demonstrate that the SSA-EMS framework achieves RF classification accuracies exceeding 98% across the full frequency band, sig-nificantly outperforming single frequency bands. Notably, in the subject-independent evaluation, model accuracy remains above 96%, confirming the algorithm’s strong cross-subject generalization capability. Experimental results validate that the SSA-EMS framework effectively captures dynamic neural differences associated with emotions. Nevertheless, limitations in binary classification and the potential for multimodal exten-sion remain important directions for future research.

Puedes escribir una PREreview de Cross-Subject EEG Emotion Recognition Using SSA-EMS Algorithm for Feature Extraction. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora