Saltar al contenido principal

Escribe una PREreview

Buffering Airline Crew Schedules for Flight Duty Periods to Balance Planned Costs and Crew Legality Violations: A Machine Learning Approach

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202508.1347.v1

Crew legality violations pose significant operational challenges for airlines. Introducing buffer times in crew flight duty periods during the planning phase can mitigate these violations but often lead to higher planning costs. This paper presents a machine learning–driven framework, coupled with a simulation-based analysis, to balance this trade-off. We develop CatBoost models that accurately predict flight delays, translating these predictions into optimal buffer time allocations within crew schedules. Our findings highlight the critical role of delay prediction profiles and conservatism levels in achieving this balance. A case study using American Airlines data demonstrates how our approach helps decision-makers identify buffer levels that minimize legality violations while controlling costs.

Puedes escribir una PREreview de Buffering Airline Crew Schedules for Flight Duty Periods to Balance Planned Costs and Crew Legality Violations: A Machine Learning Approach. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora