Saltar al contenido principal

Escribe una PREreview

A Short Program in MuPAD that Computes in the Limit a Function <em>f</em> : N → N Which Eventually Dominates Every Computable Function<em> g</em> : N → N

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202508.0363.v5

It is known that there exists a limit-computable function f:N→N which is not computable. Every known proof of this fact does not lead to the existence of a short computer program that computes f in the limit. For n∈N, let E_n={1=x_k, x_i+x_j=x_k, x_i·x_j=x_k: i,j,k∈{0,...,n}}. For n∈N, f(n) denotes the smallest b∈N such that if a system of equations S⊆E_n has a solution in N^{n+1}, then S has a solution in {0,...,b}^{n+1}. The author proved earlier that the function f:N→N is computable in the limit and eventually dominates every computable function g:N→N. We present a short program in MuPAD which for n∈N prints the sequence {f_i(n)}_{i=0}^∞ of non-negative integers converging to f(n). For n∈N, β(n) denotes the smallest b∈N such that if a system of equations S⊆E_n has a unique solution in N^{n+1}, then this solution belongs to {0,...,b}^{n+1}. The author proved earlier that the function β:N→N is computable in the limit and eventually dominates every function δ:N→N with a single-fold Diophantine representation. The computability of β is unknown. We present a short program in MuPAD which for n∈N prints the sequence {β_i(n)}_{i=0}^\infty of non-negative integers converging to β(n).

Puedes escribir una PREreview de A Short Program in MuPAD that Computes in the Limit a Function <em>f</em> : N → N Which Eventually Dominates Every Computable Function<em> g</em> : N → N. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora