Saltar al contenido principal

Escribe una PREreview

System Call-Based Malware Detection Using Advanced Machine Learning Techniques

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202506.2406.v1

Identifying malware, especially zero-day exploits, continues to pose a significant issue in cybersecurity. Conventional signature-based approaches are inadequate for identifying new threats, as they rely on established patterns of behaviour. To enhance the precision and effectiveness of anomaly-based malware detection, this study examines the application of hybrid machine learning (ML) approaches trained on the AWSCTD dataset. By utilising sophisticated feature selection algorithms and incorporating metadata, this study demonstrates notable improvements in detection rates while reducing false positives. Comparing with deep learning models reveals the trade-offs between computational efficiency and accuracy. The BestFirst-SVM method, a hybrid machine learning technique that combines the feature selection capabilities of BestFirst with the classification power of SVM, outperformed other traditional machine learning techniques with an accuracy of 97.35%. A thorough summary of recent developments in the field is also provided, including insights from research articles published in respectable publications.

Puedes escribir una PREreview de System Call-Based Malware Detection Using Advanced Machine Learning Techniques. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora