Saltar al contenido principal

Escribe una PREreview

From BdG to DVR: A Pathwise Diagnostic Framework for Decoherence and Dislocation in Topological Quantum Systems

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202506.0464.v1

The Bogoliubov--de Gennes (BdG) formalism provides a powerful spectral framework for understanding excitations in topological superconductors. However, its assumptions of unitarity and coherence limit its capacity to detect the early onset of decoherence or internal quantum dislocation. In this work, we apply the recently introduced Difference-based Variational Reconstruction (DVR) framework to analyze the structure of BdG-derived eigenmodes, particularly Majorana bound states, under controlled decoherence.We demonstrate that while BdG spectra remain stable, DVR contrast residuals sharply rise in spin--position dislocation scenarios, exposing hidden coherence breakdown. This extends our previous findings [1] on DVR's detection of wave-particle duality transitions and the Quantum Cheshire Cat effect, where DVR contrast residuals notably revealed sharp dislocation between spin and trajectory mid-path, even as global coherence was preserved. Here, we build on those findings by showing that DVR can act as a dynamic structural diagnostic layered over BdG-based eigenmodes, detecting decoherence and spin dislocation even before spectral features change. The DVR contrast residual framework provides a new pathwise lens for open quantum systems, complementing Hamiltonian-based models with localized, contrast-sensitive diagnostics.

Puedes escribir una PREreview de From BdG to DVR: A Pathwise Diagnostic Framework for Decoherence and Dislocation in Topological Quantum Systems. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora