Saltar al contenido principal

Escribe una PREreview

Curve Tracking Algorithm for Automatic Train Operation Based on Iterative Learning Control

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202412.2388.v1

This paper addresses the challenge of designing an automatic train driving controller for high-speed railway systems to improve the accuracy and stability of train speed control. The Automatic Train Operation (ATO) system is crucial for ensuring safety, punctuality, and comfort. Traditional control algorithms, such as PID, Sliding Mode Control (SMC), and neural networks, have limitations in handling the nonlinear and time-varying nature of train dynamics. To overcome these, we propose a PID-type Iterative Learning Control (ILC) algorithm that leverages the repetitive characteristics of train operations. The algorithm combines feedback and feedforward mechanisms to process operational data iteratively, enabling rapid and accurate tracking of the target speed curve. Simulations using real track data and train parameters validate the algorithm's effectiveness, demonstrating improved tracking accuracy and convergence as the number of iterations increases. The PID-type ILC algorithm outperforms traditional PID control, showing its potential for high-precision, fast-response, and stable tracking in automatic train operation systems.

Puedes escribir una PREreview de Curve Tracking Algorithm for Automatic Train Operation Based on Iterative Learning Control. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora