Saltar al contenido principal

Escribe una PREreview

Physics-Informed Neural Networks for Modal Wave Field Predictions in 3D Room Acoustics

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202411.1848.v1

The capabilities of Physics-Informed Neural Networks (PINNs) to solve the Helmholtz equation in a simplified three-dimensional room are investigated. From a simulation point of view, it is interesting since room acoustic simulations often lack information from the applied absorbing material in the low-frequency range. This study extends previous findings toward modeling the 3D sound field with PINNs in an excitation case using DeepXDE with the backend PyTorch. The neural network is memory-efficiently optimized by mini-batch stochastic gradient descent with periodic resampling after 100 iterations. A detailed hyperparameter study is conducted regarding the network shape, activation functions, and deep learning backends (PyTorch, TensorFlow 1, TensorFlow 2). We address the computational challenges of realistic sound excitation in a confined area. The accuracy of the PINN results is assessed by a Finite Element Method (FEM) solution computed with openCFS. For distributed sources, it was shown that the PINNs converge to the solution, with deviations occurring in the range of a relative error of 0.28%. With feature engineering and including the dispersion relation of the wave into the neural network input via transformation, the trainable parameters were reduced to a fraction (around 5%) compared to the standard PINN formulation while yielding a higher accuracy of 1.54% compared to 1.99%.

Puedes escribir una PREreview de Physics-Informed Neural Networks for Modal Wave Field Predictions in 3D Room Acoustics. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora