Saltar al contenido principal

Escribe una PREreview

Life as a Function: Why Transformer Architectures Struggle to Gain Genome-Level Foundational Capabilities

Publicada
Servidor
bioRxiv
DOI
10.1101/2025.01.13.632745

Recent advances in generative models for nucleotide sequences have shown promise, but their practical utility remains limited. In this study, we explore DNA as a complex functional representation of evolutionary processes and assess the ability of transformer-based models to capture this complexity. Through experiments with both synthetic and real DNA sequences, we demonstrate that current transformer architectures, particularly auto-regressive models relying on next-token prediction, struggle to effectively learn the underlying biological functions. Our findings suggest that these models face inherent limitations, that cannot be overcome with scale, highlighting the need for alternative approaches that incorporate evolutionary constraints and structural information. We propose potential future directions, including the integration of topological methods or the switch of modelling paradigms, to enhance the generation of genomic sequences.

Puedes escribir una PREreview de Life as a Function: Why Transformer Architectures Struggle to Gain Genome-Level Foundational Capabilities. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora