Saltar al contenido principal

Escribe una PREreview

CryoNeRF: reconstruction of homogeneous and heterogeneous cryo-EM structures using neural radiance field

Publicada
Servidor
bioRxiv
DOI
10.1101/2025.01.10.632460

Cryogenic electron microscopy (cryo-EM) has become a widely used technique for determining the 3D structures of proteins. However, cryo-EM datasets often exhibit heterogeneity, with protein particle images from multiple conformations or compositional states. Here we proposeCryoNeRF, a novel neural radiance fields (NeRF)-based cryo-EM reconstruction framework operating directly in Euclidean 3D space. CryoNeRF introduces a multi-resolution hash encoding and heterogeneity-aware cryo-EM encoder to model cryo-EM heterogenity. Extensive experiments demonstrate the stability and superior performance of CryoNeRF in both homogeneous and heterogeneous settings. On homogeneous datasets, CryoNeRF achieves 15.8% improvement over previous state-of-the-art methods. On both simulated and experimental heterogeneous datasets, CryoNeRF demonstrates exceptional capability in handling both conformational and compositional variations, which is consistent with previous experimental discoveries. Notably, CryoNeRF successfully distinguishes assembly states that even only account for 2% particles of the dataset in cases of compositional heterogeneity.

Puedes escribir una PREreview de CryoNeRF: reconstruction of homogeneous and heterogeneous cryo-EM structures using neural radiance field. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora