Skip to main content

Write a PREreview

Deep Learning Based Question Answering System

Posted
Server
Preprints.org
DOI
10.20944/preprints202312.1739.v2

Deep learning-based question answering systems have transformed the discipline of natural language processing (NLP) by automating the extraction of answers from textual data. This survey paper provides a captivating overview of these systems, exploring methodologies, techniques, and architectures such as recurrent neural networks (RNNs), BERT model, and transformer models. Extractive and generative approaches are examined, alongside the challenges of handling complex questions, managing noisy input, and addressing rare or unseen words. This survey serves as a stimulating reference, offering valuable insights to researchers and practitioners, fueling innovation and advancement in question answering systems within NLP.

You can write a PREreview of Deep Learning Based Question Answering System. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now