Comments
Write a commentNo comments have been published yet.
COMMENTS ON THE PREPRINT BY Dölle, Adhikari et al.
Targeted protein degradation is a very active field at the moment. Many efforts in this area are focusing on transforming known ligands (binders, inhibitors) of proteins with a clear disease relevance into bifunctional (PROTAC-based) degrader molecules. Unlike the traditional antagonist/inhibitor based compounds in preclinical and clinical use that diminish (inhibit) activity of the target, these degrader molecules induce selective degradation of the target. Thus, they remove the target from the proteome. This type of pharmacological activity could be a real benefit when the target in question plays significant scaffolding roles, by engaging multiple binding partners using different regions and binding sites. In such a case, inhibiting individual protein-protein interactions would be highly impractical. However, if the target is degraded, all these PPIs would disappear together with the target!
Dölle, Adhikari et al. select one such target - WDR5, a protein that performs different scaffolding roles (i.e. binds different partners) in the context of epigenetic regulation. Because of this, WDR5 has been implicated as a target for drug development and couple of compounds that inhibit WDR5 mediated PPIs have been described. These compounds served here as a starting point for WDR5 selective degrader development. The authors used existing structures of WDR5 bound to the PPI inhibitors to identify surface exposed areas of the molecules that could be modified for degrader molecule development. In brief, each PROTAC (bifunctional degrader) includes a ligand for the target and a ligand that recruits an E3 ubiquitin ligase, connected via a linker. The linker is known to have an impact on the performance of PROTACs and the authors use three chemically distinct types of linkers (PEG based, aliphatic and aromatic). The nature of the E3 ligase is also a major factor that affects degraders' activity, and the authors start by incorporating ligands for cereblon (CRBN), VHL and MDM2. Altogether, they generate number of PROTAC-based degraders featuring different linkers and different ligases.
They describe detailed validation steps of their degraders which included:
Overall, the work is of high quality and includes appropriate steps for degrader validation. This gives high confidence that WDR5 degraders described in this work are useful as probes for WDR5 biology. For example, what happens to histone methylation once WDR5 is removed? Does removal of WDR5 lead to destabilization (or stabilization) of some of its binding partners (proteomics results suggest that this may not be the case, but would be interesting to dig deeper into this question)? What happens to transcription? What effect does this have on MYC activity (MYC family is known to engage with WDR5)? I am sure the authors and the community have these and many other questions in mind, and I look forward to seeing what new biology they and others can discover with this new generation of tool compounds in hand.
No comments have been published yet.