DVPNet: A New XAI-Based Interpretable Genetic Profiling Framework Using Nucleotide Transformer and Probabilistic Circuits
- Posted
- Server
- bioRxiv
- DOI
- 10.64898/2026.01.28.695053
In this study, we present an XAI-based genetic profiling framework that quantifies gene importance for distinguishing cancer cells from normal cells based on an interpretable AI decision process. We propose a new explainable AI (XAI) classification model that combines probabilistic circuits with the Nucleotide Transformer. By leveraging the strong feature-extraction capability of the Nucleotide Transformer, we design a tractable classification framework based on probabilistic circuits while preserving probabilistic interpretability.
To demonstrate the capability of this framework, we used the GSE131907 single-cell lung cancer atlas and constructed a dataset consisting of cancer-cell and normal-cell classes. From each sample, 900 gene types were randomly selected and converted into embedding vectors using the Nucleotide Transformer, after which the classification model was trained. We then extracted class-specific probabilistic contributions from the tractable model and defined a contribution score for the cancer-cell class. Genetic profiling was performed based on these scores, providing insights into which genes and biological pathways are most important for the classification task. Notably, 1,524 of the 9,540 observed genes showed contribution scores that contradicted what would be expected from their class-wise occurrence frequencies, suggesting that the profiling goes beyond simple statistics by leveraging biological feature representations encoded by the Nucleotide Transformer. The top-ranked genes among these contradictory cases include several well-studied genes in cancer research (e.g., ITGA5, SIGLEC9, NOTUM, and TP73). Overall, these analyses go beyond traditional statistical or gene-expression-level approaches and provide new academic insights for genetic research.