Skip to main content

Write a PREreview

Numerical Validation of the Discrete Extramental Clock Law: Hierarchical Emergence of Objective Time from Ordinal Conjunctions in Chaotic Systems

Posted
Server
Preprints.org
DOI
10.20944/preprints202512.2431.v1

The Discrete Extramental Clock Law proposes that objective time in chaotic systems emerges discretely from statistically significant ordinal conjunctions across multiple trajectories, modulated by a universal gating function g(τs)g(τs​) rooted in Kendall's rank correlation and Feigenbaum universality. This study provides numerical evidence for the ontological hierarchy: high local chaotic activity (e.g., positive Lyapunov exponents) does not advance objective time; only global ordinal coherence (high ∣τs∣∣τs​∣) generates effective temporal ticks. Using coupled logistic maps, the Lorenz attractor, fractional-order extensions, and empirical \textit{Aedes aegypti} population data, we demonstrate negative correlation between local variance/Lyapunov activity and the rate of emergent time advance, fractal inheritance in tntn​ (Dtn≈1.98Dtn​​≈1.98), and robust noise tolerance. These results challenge the universality of Newtonian time in chaotic regimes, supporting emergent discreteness even in classical chaos.

You can write a PREreview of Numerical Validation of the Discrete Extramental Clock Law: Hierarchical Emergence of Objective Time from Ordinal Conjunctions in Chaotic Systems. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now