Skip to main content

Write a PREreview

Non-Renormalization Singularity Resolution and Black Hole Shadow Verification

Posted
Server
Preprints.org
DOI
10.20944/preprints202512.0145.v1

We propose a non-perturbative quantum gravity framework using quantum vortices (statistical average topological structures of microscopic particles) embedded in AdS/CFT holographic duality, resolving black hole singularities without renormalization. Thus, this constitutes a singularity-resolution mechanism grounded in physical processes rather than mathematical techniques. The quantum vortex field generates a repulsive potential within the critical radius r∗ ≈ 8.792 × 10−11m, dynamically preventing matter from reaching r = 0 and avoiding curvature divergence. The derived Huang metric (Schwarzschild metric with quantum corrections) enables parameter-free prediction of black hole shadow angular diameters, without post-observation fitting of Kerr black hole spin. Observational verification shows: the theoretical shadow of Sgr A* is 53.3 μas (EHT: 51.8 ± 2.3 μas), and that of M87* is 46.2 μas (EHT: 42 ± 3 μas), resolving contradictions of the Kerr model. This framework unifies singularity elimination, information conservation, and shadow prediction, providing a testable quantum gravity paradigm.

You can write a PREreview of Non-Renormalization Singularity Resolution and Black Hole Shadow Verification. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now