Saltar al contenido principal

Escribe una PREreview

Variational Quantum Eigensolver for Clinical Biomarker Discovery: A Multi-Qubit Model

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202511.0978.v1

We formalize an inverse, data-conditioned variant of the Variational Quantum Eigensolver (VQE) for clinical biomarker discovery. Given patient-encoded quantum states, we construct a task-specific Hamiltonian whose coefficients are inferred from clinical associations, and interpret its expectation value as a calibrated energy score for prognosis and treatment monitoring. The method integrates principled coefficient estimation, ansatz specification with basis rotations, commuting-group measurements, and a practical shot-budget analysis. Evaluated on public infectious-disease datasets under severe class imbalance, the approach yields consistent gains in balanced accuracy and precision-recall over strong classical baselines, with stability across random seeds and feature ablations. This variational energy-scoring framework bridges Hamiltonian learning and clinical risk modeling, offering a compact, interpretable, and reproducible route to biomarker prioritization and decision support.

Puedes escribir una PREreview de Variational Quantum Eigensolver for Clinical Biomarker Discovery: A Multi-Qubit Model. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora