Saltar al contenido principal

Escribe una PREreview

Automatic (Re)Calibration Of Water Resource Recovery Facility Models To Ensure Continuous Model Performance

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202511.0801.v1

Digital twin applications for water resource recovery facilities require frequent model recalibration to maintain predictive accuracy under dynamic operational conditions. Current calibration methodologies face critical limitations: manual protocols demand extensive expert intervention and iterative parameter adjustments spanning weeks to months, while automated optimization algorithms impose elevated computational burdens that struggle to converge within practical timeframes. This study introduces Expert Systems with Neuro-Evolution of Augmenting Topologies (ES-NEAT), integrating genetic algorithms, artificial neural networks, and transfer learning to preserve and transfer calibration knowledge across recalibration scenarios. Application to the full-scale Eindhoven WRRF over six months, calibrating 33 parameters across multiple temporal scenarios, demonstrated 72.1% and 49.0% Kling-Gupta Efficiency improvement over manual calibration for tank-in-series and compartmental model structures, respectively. Transfer learning reduced subsequent recalibration computational time by 50-70% while maintaining prediction accuracy, transforming initial 10-12 hour optimizations into 3-6 hour recalibrations through knowledge preservation. Performance degradation analysis established 2-month optimal recalibration intervals under observed operational variability. The methodology enables practical digital twin implementation by transforming recalibration from episodic expert-dependent burden into continuous, automated learning processes operating at timescales matching operational decision-making needs.

Puedes escribir una PREreview de Automatic (Re)Calibration Of Water Resource Recovery Facility Models To Ensure Continuous Model Performance. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora