Saltar al contenido principal

Escribe una PREreview

Federated Zero-Trust: Privacy-Preserving Analytics Across Multi-Cloud Environments

Publicada
Servidor
Preprints.org
DOI
10.20944/preprints202510.1928.v1

The rapid expansion of multi-cloud ecosystems has intensified the demand for privacy-preserving analytics across untrusted infrastructures. This paper proposes Federated Zero-Trust Analytics (FZTA), a framework that integrates federated learning, zero-trust security, and privacy-enhancing computation to enable secure data collaboration without centralized trust. The design combines continuous identity verification, decentralized policy enforcement, and hybrid cryptography based on homomorphic encryption and differential privacy. Evaluation across three commercial clouds demonstrates that FZTA achieves near baseline model accuracy (within 2% of centralized training) while maintaining (ε<1.2, δ=10−5) differential privacy guarantees and less than 20% computational overhead. The framework resists eavesdropping, replay, and model inversion attacks while meeting compliance standards such as GDPR and HIPAA. Results confirm that strong privacy and federated scalability can coexist under zero-trust conditions, establishing a foundation for secure cross-domain analytics in healthcare, finance, and IoT applications.

Puedes escribir una PREreview de Federated Zero-Trust: Privacy-Preserving Analytics Across Multi-Cloud Environments. Una PREreview es una revisión de un preprint y puede variar desde unas pocas oraciones hasta un extenso informe, similar a un informe de revisión por pares organizado por una revista.

Antes de comenzar

Te pediremos que inicies sesión con tu ORCID iD. Si no tienes un iD, puedes crear uno.

¿Qué es un ORCID iD?

Un ORCID iD es un identificador único que te distingue de otros/as con tu mismo nombre o uno similar.

Comenzar ahora