Skip to main content

Write a PREreview

Round-Trip Mars Missions in the 2031 Window: Feasible and Extreme Scenarios Derived from CA21-Anchored Trajectories

Posted
Server
Preprints.org
DOI
10.20944/preprints202510.1072.v1

This study investigates round-trip Earth–Mars–Earth missions during the 2031 opposition, applying a trajectory design framework derived from the early orbital configuration of asteroid 2001 CA21. Using Lambert-based analysis and JPL Horizons ephemerides, two optimized and dynamically consistent mission architectures were identified: a rapid scenario featuring a 33-day outbound transfer, a 30-day surface stay, and a 90-day return (total ≈ 153 days), and a feasible scenario combining a 56-day outbound transfer, a 35-day surface stay, and a 135-day return (total ≈ 226 days). Both trajectories were validated through full ephemeris computation, confirming heliocentric coherence within the CA21-anchored orbital plane and physically realistic departure and arrival velocities. The 2031 alignment minimizes plane-change penalties and yields energetically balanced outbound and inbound arcs. These findings demonstrate that short-duration, reversible Earth–Mars missions can be designed from early asteroid-derived orbital templates, establishing a predictive framework for identifying future high-velocity transfer opportunities.

You can write a PREreview of Round-Trip Mars Missions in the 2031 Window: Feasible and Extreme Scenarios Derived from CA21-Anchored Trajectories. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now