Skip to main content

Write a PREreview

β-Optimization in the Information Bottleneck Framework: A Theoretical Analysis

Posted
Server
Preprints.org
DOI
10.20944/preprints202505.0746.v1

The Information Bottleneck (IB) framework formalizes the trade-off between compression and prediction in representation learning. A crucial parameter is the Lagrange multiplier β, which controls the balance between preserving information relevant to a target variable Y and compressing the representation Z of an input X. Selecting an optimal β (denoted β∗) is challenging and typically done via empirical tuning. In this paper, I present a rigorous theoretical analysis of β∗-optimization in both the Variational IB (VIB) and Neural IB (NIB) settings. I define β∗ as the critical value of β that marks the boundary between non-trivial (informative) and trivial (uninformative) representations, ensuring maximal compression before the representation collapses. I derive formal conditions for its existence and uniqueness. I prove several key results: (1) the IB trade-off curve (relevance–compression frontier) is concave under mild conditions, implying that β, as the slope of this curve, uniquely characterizes optimal operating points in regular cases; (2) there exists a critical β threshold, β∗ = F′(0+) (the slope of the IB curve at zero compression), beyond which the IB solution collapses to a trivial representation; (3) for practical IB implementations (VIB and NIB), I discuss how β∗ can be computed algorithmically, including complexity analysis of naive β-sweeping versus adaptive methods like binary search, for which pseudo-code is provided. I provide formal theorems and proofs for concavity properties of the IB Lagrangian, continuity of the IB curve, and boundedness of mutual information quantities. Furthermore, I compare standard IB, VIB, and NIB formulations in terms of the optimal β, showing that while standard IB provides a theoretical target for β∗, variational and neural approximations may deviate from this optimum. My analysis is complemented by a discussion on the implications for deep neural network representations. The results establish a principled foundation for β selection in IB, guiding practitioners to achieve maximal meaningful compression without exhaustive trial-and-error

You can write a PREreview of β-Optimization in the Information Bottleneck Framework: A Theoretical Analysis. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now