Skip to main content

Write a PREreview

Electromagnetic waves destabilize the SARS-CoV-2 Spike protein and reduce SARS-CoV-2 Virus-Like Particle (SC2-VLP) infectivity

Posted
Server
bioRxiv
DOI
10.1101/2024.09.11.612487

Infection and transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to pose a global public health concern. Using electromagnetic waves represents an alternative strategy to inactivate pathogenic viruses such as SARS-CoV-2 and reduce overall transmission. However, whether electromagnetic waves reduce SARS-CoV-2 infectivity is unclear. Here, we adapted a coplanar waveguide (CPW) to identify electromagnetic waves that could neutralize SARS-CoV-2 virus-like particles (SC2-VLPs). Treatment of SC2-VLPs, particularly at frequencies between 2.5-3.5 GHz at an electric field of 400 V/m for 2 minutes, reduced infectivity. Exposure to a frequency of 3.1 GHz decreased the binding of SC2-VLPs to antibodies directed against the Spike S1 subunit receptor binding domain (RBD). These results suggest that electromagnetic waves alter the conformation of Spike, thereby reducing viral attachment to host cell receptors. Overall, this data provides proof-of-concept in using electromagnetic waves for sanitation and prevention efforts to curb the transmission of SARS-CoV-2 and potentially other pathogenic enveloped viruses.

You can write a PREreview of Electromagnetic waves destabilize the SARS-CoV-2 Spike protein and reduce SARS-CoV-2 Virus-Like Particle (SC2-VLP) infectivity. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now