Skip to main content

Write a PREreview

Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type specific manner

Posted
Server
bioRxiv
DOI
10.1101/2021.11.03.467058

Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation is not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389 and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent of muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, skeletal muscle could be a target for managing metabolism in cancer.

Highlights

  • Cancer abrogates insulin-stimulated glucose transport selectively in oxidative soleus muscle

  • Multiple TBC1D4 phosphorylation sites are reduced in cancer-associated muscle insulin resistance

  • Cancer leads to increased AMPK signaling in the glycolytic EDL muscle

  • Cancer alters anabolic insulin signaling in soleus and EDL muscle

You can write a PREreview of Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type specific manner. A PREreview is a review of a preprint and can vary from a few sentences to a lengthy report, similar to a journal-organized peer-review report.

Before you start

We will ask you to log in with your ORCID iD. If you don’t have an iD, you can create one.

What is an ORCID iD?

An ORCID iD is a unique identifier that distinguishes you from everyone with the same or similar name.

Start now